Abstract

A new sliding mode control model of discrete chaotic systems based on multimodal function series coupling is proposed to overcome the shortcomings of the standard PSO algorithm in multimodal function optimization. Firstly, a series coupled PSO algorithm (PP algorithm) based on multimodal function is constructed, which is optimized by multipeak solution on the basis of the standard PSO algorithm. Secondly, the improved PSO algorithm is applied to search all the extreme points in the feasible domain. Thirdly, the Powell method is used to perform the local optimization of the search results, and the newly generated extreme points are added to the extreme point database according to the same peak judgment operator. Finally, the long training time of PP algorithm can be overcome by the characteristics of fast convergence rate of the cloud mutation model. And also, both the population size and the redundancy can be reduced. Then, the clonal selection algorithm is used to keep the diversity of the population effectively. Simulation results of the sliding mode control of discrete chaotic systems show that the improved PSO algorithm obviously improves the response speed, overshoot, and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.