Abstract
Soft robots are increasingly finding their way into many applications, especially those involving manipulation of sensitive and delicate objects or interaction with humans. However, their high-compliance characteristics pose considerable challenges in obtaining low-complexity yet accurate dynamical models that are suitable for advanced feedback control. This paper proposes a framework for end-effector positioning of a soft robot. First, physics-informed sparse regression is used for deriving a nonlinear mathematical model of the robot dynamics. Then, a control scheme comprising a super-twisting sliding mode controller and a nonlinear input estimator is designed for the positioning of the robot end-effector. Conditions for uniform asymptotic stability of the closed-loop system are given. Finally, experimental tests carried on a real soft robot show the efficacy of the proposed design and its tracking accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.