Abstract

. Precise positioning and trajectory tracking control applications are important for industrial manufacturing and scientific research. Ball-screw, worm-gear, and power-screw driven systems are widely used for this purpose. Since power screw driven systems provide long range and allow precise servo control, they are commonly preferred. The control strategy developed for power screw driven systems is expected to be robust, to respond rapidly for fast tracking performance and to reject disturbances. These systems should also be controlled precisely in case of uncertainties. In order to enhance the overall system controllability, sliding mode control is one of the preferred strategies. In this paper, sliding mode control strategy developed for a power screw driven positioning table is introduced. Mathematical models of the power screw, positioning table and actuator subsystems are derived. An experimental positioning table setup consisting of a power screw is manufactured to which the developed controller is deployed for testing. The stability of the sliding mode controller is investigated in detail and its performance is compared to that of a PID controller for verification purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.