Abstract

This paper presents a sliding mode controller for a 2DOF planar pneumatic manipulator actuated by pleated pneumatic artificial muscle actuators. It is argued that it is necessary to account for the pressure dynamics of muscles and valves. A relatively detailed system model that includes pressure dynamics is established. Since the model includes actuator dynamics, feedback linearization was necessary to design a sliding mode controller. The feedback linearization and subsequent controller design are presented in detail, and the controller’s performance is evaluated, both in simulation and experimentally. Chattering was found to be quite severe, so the introduction of significant boundary layers was required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.