Abstract

In this article, the sliding mode control problem is addressed for a class of sampled-data systems subject to deception attacks. The sampling periods undergo component-wise random perturbations that are governed by a Markovian chain. The component of the sampled output is transmitted via an individual communication channel that is vulnerable to deception attacks, and Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the deception attacks initiated by the adversaries. A sliding mode controller is designed to drive the state into the sliding domain around the specified sliding surface, and sufficient conditions are derived to guarantee the exponentially ultimate boundedness of the resultant closed-loop system in the mean-square sense. Furthermore, an optimization problem is established to pursue locally optimal control performance. Finally, a simulation example is given to verify the effectiveness and advantages of the developed controller design approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.