Abstract
This paper mainly focuses on designing a sliding mode boundary controller for a single flexible-link manipulator based on adaptive radial basis function (RBF) neural network. The flexible manipulator in this paper is considered to be an Euler-Bernoulli beam. We first obtain a partial differential equation (PDE) model of single-link flexible manipulator by using Hamiltons approach. To improve the control robustness, the system uncertainties including modeling uncertainties and external disturbances are compensated by an adaptive neural approximator. Then, a sliding mode control method is designed to drive the joint to a desired position and rapidly suppress vibration on the beam. The stability of the closed-loop system is validated by using Lyapunov s method based on infinite dimensional model, avoiding problems such as control spillovers caused by traditional finite dimensional truncated models. This novel controller only requires measuring the boundary information, which facilitates implementation in engineering practice. Favorable performance of the closed-loop system is demonstrated by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.