Abstract

In this paper, we propose a sliding-mode-based stochastic distribution control algorithm for nonlinear systems, where the sliding-mode controller is designed to stabilize the stochastic system and stochastic distribution control tries to shape the sliding surface as close as possible to the desired probability density function. Kullback-Leibler divergence is introduced to the stochastic distribution control, and the parameter of the stochastic distribution controller is updated at each sample interval rather than using a batch mode. It is shown that the estimated weight vector will converge to its ideal value and the system will be asymptotically stable under the rank-condition, which is much weaker than the persistent excitation condition. The effectiveness of the proposed algorithm is illustrated by simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.