Abstract

The sliding mode control (SMC) design is discussed for a class of time-varying delay systems which is delay-range-dependent and rate-range-dependent. A novel time-varying nonlinear sliding surface is employed. The choice of nonlinear sliding surface is to change the state matrix of sliding mode system, which can combine the advantages of different conventional linear sliding surfaces. Thus the better transient qualities of system states, i.e., quicker response and smaller overshoot, can be achieved. The sufficient conditions ensuring the asymptotic stability of sliding mode are derived in terms of linear matrix inequalities. The algorithms deciding unknown parameters of the nonlinear sliding surface and the corresponding sliding mode controller are also presented. Finally, A numerical example is given to illustrate the effectiveness of the result here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.