Abstract

The ice friction behavior of various microtextured polymer surfaces was studied with respect to ice temperature and applied load using a customized linear tribometer. Similar micropillar patterns were replicated on polypropylene and two rubber compounds, and when hierarchical micro–micro textures were present, all the materials exhibited superhydrophobicity. Taller protective micropillars were shown to be crucial for protecting the smaller microtextures from abrasive wear. The mechanical properties of the polymers affected the sliding friction of the microtextured surfaces on ice. High loading of hierarchical textures on rigid polypropylene or operation near the ice melting point tended to increase its adhesion tendency or resisting behavior. The sliding performance of the hard and soft rubber compounds was temperature-dependent, and the texture on the soft rubber influenced the sliding friction differently depending on the ice temperature. Consequently, textural modifications of the sliding surface enabled a certain degree of control over the sliding friction behavior on ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.