Abstract

We report the sliding adhesion of hexagonal boron nitride (hBN) and graphene on silica using single nanotube pullout force measurements and potential energy landscape calculations by density functional theory (DFT). In contrast to isotropic sliding of graphene on silica, the sliding of hBN on silica exhibits strong directional dependence with unusually high energy barriers formed by stacking of unterminated Si or O atoms on N atoms. Stronger interfacial adhesion energy and shear strength across possible termination structures of silica with hBN versus graphene cumulate in the measured interfacial shear strength of ∼34.7 MPa versus ∼19.2 MPa for the respective nanotube-reinforced composites

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call