Abstract

Federated learning (FL) in a bandwidth-limited network with energy-limited user equipments (UEs) is under-explored. In this article, to jointly save energy consumed by the battery-limited UEs and accelerate the convergence of the global model in FL for the bandwidth-limited network, we propose the sliding differential evolution-based scheduling (SDES) policy. To this end, we first formulate an optimization that aims to minimize a weighted sum of energy consumption and model training convergence. Then, we apply the SDES with parallel differential evolution (DE) operations in several small-scale windows, to address the above proposed problem effectively. Compared with existing scheduling policies, the proposed SDES performs well in reducing energy consumption and the model convergence with lower computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.