Abstract

Mitotic and meiotic spindles are assemblies of microtubules (MTs) that form during cell division to physically separate sister chromosomes. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. Interactions between MTs and motors have been studied both experimentally and theoretically in many contexts, including the self-organization of arrays of MTs by motors and the competition between different classes of motors to move a single load. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. We propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-end-directed motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles with sharp poles and a stable steady-state length. This model accounts for several experimental observations that were difficult to explain with existing models. Three new predictions of the model were tested and verified in Xenopus egg extracts. We show that a simple two-motor model could create stable, bipolar spindles under a wide range of physical parameters. Our model is the first self-contained model for anastral spindle assembly and MT sliding (known as poleward flux). Our experimental results support the slide-and-cluster scenario; most significantly, we find that MT sliding slows near spindle poles, confirming the model's primary prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.