Abstract

We quantify the importance of turbulent flow on the propagation of hydraulic fractures (HF) accounting for the addition of friction reducing agents to the fracturing fluid (slickwater fluid). The addition in small quantities of a high molecular weight polymer to water is sufficient to drastically reduce friction of turbulent flow. The maximum drag reduction (MDR) asymptote is always reached during industrial-like injections. The energy required for pumping is thus drastically reduced, allowing for high volume high rate hydraulic fracturing operations at a reasonable cost. We investigate the propagation of a hydraulic fracture propagating in an elastic impermeable homogeneous solid under a constant (and possibly very high) injection rate accounting for laminar and turbulent flow conditions with or without the addition of friction reducers. We solve the near-tip HF problem and estimate the extent of the laminar boundary layer near the fracture tip as a function of a tip Reynolds number for slickwater. We obtain different propagation scalings and transition time scales. This allows us to easily quantify the growth of a radial HF from the early-time turbulent regime(s) to the late-time laminar regimes. Depending on the material and injection parameters, some propagation regimes may actually be bypassed. We derive both accurate and approximate solutions for the growth of radial HF in the different limiting flow regimes (turbulent smooth, rough, MDR) for the zero fracture toughness limit (corresponding to the early stage of propagation of a radial HF). We also investigate numerically the transition(s) between the early-time MDR regime to the late-time laminar regimes (viscosity and toughness) for slickwater fluid. Our results indicate that the effect of turbulent flow on high rate slickwater HF propagation is limited and matters only at early times (at most during the first minutes for industrial hydraulic fracturing operations).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.