Abstract

A new dimension-reduction method involving slicing the region of the response and applying local kernel regression to each slice is proposed. Compared with the traditional inverse regression methods [e.g., sliced inverse regression (SIR)], the new method is free of the linearity condition and has much better estimation accuracy. Compared with the direct estimation methods (e.g., MAVE), the new method is much more robust against extreme values and can capture the entire central subspace (CS) exhaustively. To determine the CS dimension, a consistent cross-validation criterion is developed. Extensive numerical studies, including a real example, confirm our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.