Abstract

Operational amplifiers are fundamental building blocks in modern analog and mixed-signal systems such as data converters, switched-capacitor circuits, and filters. The fully-differential structure is extensively used in these applications because of its improved dynamic performance with respect to such aspects as signal-to-noise ratio(SNR) and total harmonic distortion(THD) when compared to its single-ended counterpart. In some of these applications, the fully-differential amplifier is required to have fast transient settling time without slew-rate limitations. Power consumption also must be taken into consideration because low power consumption can significantly reduce a battery’s weight and size, and extend its life-time. A Class A amplifier is a difficult configuration in which to conciliate all these requirements, since its fixed bias current can limit its maximum output current. To simultaneously meet both slewrate and power consumption requirements, several slew-rate enhancement(SRE) techniques have been proposed in the literature, but all of them are either incompatible with the low voltage operation or exhibit either degradation in linearity or increase in circuit complexity. This thesis presents a simple SRE technique, efficient in both power and area usage, improve the slew rate while overcoming the drawbacks of state-of-the-art SRE techniques. In this work, several existing SRE techniques are discussed, and their advantages and disadvantages are identified. The proposed SRE technique is based on excess transient detection and feedback. A transient signal can be detected at the internal nodes of amplifier. Once the detected transient signal is found to be larger than a pre-defined turn-on value, the excess transient signal can be instantaneously amplified to turn on a dynamic current source and feed it back to the amplifier for current boosting. This pre-defined turn-on voltage results in a SRE circuit being solidly off during quiescent state. Small-signal performance and linearity of the original amplifier can be thus well preserved. Thanks to this excess transient feedback concept, the implementation is much simpler than that of previously reported methods, and the static

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.