Abstract

High-precision analyses are presented for the production of scalar sleptons, selectrons and smuons in supersymmetric theories, at future e + e- and e-e- linear colliders. Threshold production can be exploited for measurements of the selectron and smuon masses, an essential ingredient for the reconstruction of the fundamental supersymmetric theory at high scales. The production of selectrons in the continuum will allow us to determine the Yukawa couplings in the selectron sector, scrutinizing the identity of the Yukawa and gauge couplings, which is a basic consequence of supersymmetry. The theoretical predictions are elaborated at the one-loop level in the continuum, while at threshold non-zero width effects and Sommerfeld rescattering corrections are included. The phenomenological analyses are performed for e + e- and e-e- linear colliders with energy up to about 1 TeV and with high integrated luminosity up to 1 ab-1 to cover the individual slepton channels separately with high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.