Abstract

Due to confinement effects, concrete-filled fiber-reinforced polymer (FRP) tubes have an enhanced performance comparable to conventionally reinforced concrete members. However, the strength and ductility enhancements may result in slender sections, which may be susceptible to instability or geometric and loading imperfections. Because stiffness of FRP is less than that of steel, designers cannot directly use current specifi- cations to size compression members. Uniaxial compression tests on a total of seven hybrid columns, with slenderness ratios up to 36, showed that strength is reduced by as much as 71% of the equivalent short column, and the axial and hoop strains are reduced by as much as 85 and 87%, respectively. These significant reductions result in underutilization of confinement in slender columns. An analytical tool with an incremental approach was developed and compared favorably with test results. A parametric study was carried out, which showed the modulus of elasticity of the tube to have a pronounced effect on the slenderness limit of the column. A new equation was proposed for the slenderness limit of hybrid columns based on a maximum of 5% strength reduc- tion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.