Abstract

BackgroundThe aim of this study was to evaluate the results of sleep-wake cycle monitoring using amplitude-integrated EEG (aEEG) and neuroimaging in newborn infants with a possible perinatal hypoxic insult, investigate the correlation between the findings, and determine the relevance of the findings to reasonably predict neurological outcome.MethodsaEEG was recorded among newborn infants suspected of perinatal asphyxia between November, 2014 and June, 2015 in one neonatal intensive care unit facility. Brain imaging with serial ultrasonography and MRI when available were performed, and the infants were divided into two groups according to findings and potential neurological outcome: Group I (favorable findings) and Group II (severe findings such as high grade intraventricular hemorrhage, cerebral infarction or white matter injury). Established sleep-wake cycle times after birth was compared between the two groups.ResultsAmong 107 newborn infants, 85 subjects were classified as Group I and the remaining 22 subjects as Group II. The total number of aEEG sessions was 207 and recording time was 2,796 h with a mean of 14.43 ± 13.40 h per study. Estimated times of cyclicity were earlier in Group I (113.34 h, 95 % CI 82.31–144.37) as compared to Group II (504.39 h, 95 % CI 319.91–688.88; p < 0.001).ConclusionsDelayed cyclicity on aEEG has a strong correlation with unfavorable brain neuroimages in newborns with possible perinatal asphyxia. If sleep-wake cycles do not appear during initial period after birth, follow-up aEEG studies are recommended.Trial registrationRetrospectively registeredRegistration number: BD 2015–148Name of registry: amplitude integrated EEG in neonateDate of registration: September 9, 2015

Highlights

  • The aim of this study was to evaluate the results of sleep-wake cycle monitoring using amplitudeintegrated EEG and neuroimaging in newborn infants with a possible perinatal hypoxic insult, investigate the correlation between the findings, and determine the relevance of the findings to reasonably predict neurological outcome

  • We used amplitudeintegrated EEG (aEEG) to evaluate the relationship between establishment of sleep-wake cycle and neuroimage findings in newborn infants with suspected perinatal asphyxia treated in the neonatal intensive care unit (NICU)

  • Group II was infants with severe brain image findings related with poor neurological outcomes including: periventricular leukomalacia, intraventricular hemorrhage grade III or IV [12], ventriculomegaly to hydrocephalus, hypoxic ischemic encephalopathy, and cerebral infarction (Fig. 1)

Read more

Summary

Introduction

The aim of this study was to evaluate the results of sleep-wake cycle monitoring using amplitudeintegrated EEG (aEEG) and neuroimaging in newborn infants with a possible perinatal hypoxic insult, investigate the correlation between the findings, and determine the relevance of the findings to reasonably predict neurological outcome. We used aEEG to evaluate the relationship between establishment of sleep-wake cycle and neuroimage findings in newborn infants with suspected perinatal asphyxia treated in the neonatal intensive care unit (NICU). We sought to 1) determine whether establishing a sleep-wake cycle, as indicated by in electrocortical activity patterns, can predict normal brain development, and 2) identify the optimal time window to perform follow-up studies and determine a prognosis after an initial aEEG recording without cyclicity. The specific device used for each patient was enrolled randomly

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call