Abstract

BackgroundPolysomnography (PSG) is used to define physiological sleep and different physiological sleep stages, to assess sleep quality and diagnose many types of sleep disorders such as obstructive sleep apnea. However, PSG requires not only the connection of various sensors and electrodes to the subject but also spending the night in a bed that is different from the subject's own bed. This study is designed to investigate the feasibility of automatic classification of sleep stages and obstructive apneaic epochs using only the features derived from a single-lead electrocardiography (ECG) signal.MethodsFor this purpose, PSG recordings (ECG included) were obtained during the night's sleep (mean duration 7 hours) of 17 subjects (5 men) with ages between 26 and 67. Based on these recordings, sleep experts performed sleep scoring for each subject. This study consisted of the following steps: (1) Visual inspection of ECG data corresponding to each 30-second epoch, and selection of epochs with relatively clean signals, (2) beat-to-beat interval (RR interval) computation using an R-peak detection algorithm, (3) feature extraction from RR interval values, and (4) classification of sleep stages (or obstructive apneaic periods) using one-versus-rest approach. The features used in the study were the median value, the difference between the 75 and 25 percentile values, and mean absolute deviations of the RR intervals computed for each epoch. The k-nearest-neighbor (kNN), quadratic discriminant analysis (QDA), and support vector machines (SVM) methods were used as the classification tools. In the testing procedure 10-fold cross-validation was employed.ResultsQDA and SVM performed similarly well and significantly better than kNN for both sleep stage and apneaic epoch classification studies. The classification accuracy rates were between 80 and 90% for the stages other than non-rapid-eye-movement stage 2. The accuracies were 60 or 70% for that specific stage. In five obstructive sleep apnea (OSA) patients, the accurate apneaic epoch detection rates were over 89% for QDA and SVM.ConclusionThis study, in general, showed that RR-interval based classification, which requires only single-lead ECG, is feasible for sleep stage and apneaic epoch determination and can pave the road for a simple automatic classification system suitable for home-use.

Highlights

  • Sleep is defined as the naturally recurring state of rest during which consciousness of the world is suspended [1]

  • Sleep is categorized into two types: Rapid Eye Movement (REM) and Non-Rapid Eye Movement (NREM)

  • quadratic discriminant analysis (QDA) and support vector machines (SVM) performed well and significantly better than kNN

Read more

Summary

Introduction

Sleep is defined as the naturally recurring state of rest during which consciousness of the world is suspended [1]. Sleep is categorized into two types: Rapid Eye Movement (REM) and Non-Rapid Eye Movement (NREM). REM and NREM sleep alternate cyclically through the night. Polysomnography (PSG) is used to define physiological sleep and the different physiological sleep stages, to diagnose many types of sleep disorders including narcolepsy, restless legs syndrome, REM behavior disorder, parasomnias, and sleep apnea [4]. 30-second epochs are the basic time periods on which data analysis and interpretation is performed. Polysomnography (PSG) is used to define physiological sleep and different physiological sleep stages, to assess sleep quality and diagnose many types of sleep disorders such as obstructive sleep apnea. This study is designed to investigate the feasibility of automatic classification of sleep stages and obstructive apneaic epochs using only the features derived from a single-lead electrocardiography (ECG) signal

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.