Abstract

A growing body of literature suggests that deep brain stimulation (DBS) to treat motor symptoms of Parkinson's disease (PD) may also ameliorate certain sleep deficits. Many foundational studies have examined the impact of stimulation on sleep following several months of therapy, leaving an open question regarding the time course for improvement. It is unknown whether sleep improvement will immediately follow onset of therapy or accrete over a prolonged period of stimulation. The objective of our study was to address this knowledge gap by assessing the impact of DBS on sleep macro-architecture during the first nights of stimulation. Polysomnograms were recorded for three consecutive nights in 14 patients with advanced PD (10 male, 4 female; age: 53-74 years), with intermittent, unilateral subthalamic nucleus DBS on the final night or two. Sleep scoring was determined manually by a consensus of four experts. Sleep macro-architecture was objectively quantified using the percentage, latency, and mean bout length of wake after sleep onset (WASO) and on each stage of sleep (REM and NREM stages N1, N2, N3). Sleep was found to be highly disrupted in all nights. Sleep architecture on nights without stimulation was consistent with prior results in treatment naive patients with PD. No statistically significant difference was observed due to stimulation. These objective measures suggest that one night of intermittent subthreshold stimulation appears insufficient to impact sleep macro-architecture. Name: Adaptive Neurostimulation to Restore Sleep in Parkinson's Disease; URL: https://clinicaltrials.gov/ct2/show/NCT04620551; Identifier: NCT04620551.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call