Abstract
Sleep promotes adaptation of behavior and underlying neural plasticity in comparison to active wakefulness. However, the contribution of its two main characteristics, sleep-specific brain activity and reduced stimulus interference, remains unclear. We tested healthy humans on a texture discrimination task, a proxy for neural plasticity in primary visual cortex, in the morning and retested them in the afternoon after a period of daytime sleep, passive waking with maximally reduced interference, or active waking. Sleep restored performance in direct comparison to both passive and active waking, in which deterioration of performance across repeated within-day testing has been linked to synaptic saturation in the primary visual cortex. No difference between passive and active waking was observed. Control experiments indicated that deterioration across wakefulness was retinotopically specific to the trained visual field and not due to unspecific performance differences. The restorative effect of sleep correlated with time spent in NREM sleep and with electroencephalographic slow wave energy, which is thought to reflect renormalization of synaptic strength. The results indicate that sleep is more than a state of reduced stimulus interference, but that sleep-specific brain activity restores performance by actively refining cortical plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.