Abstract

Perception of sleep-wake times may differ from objective measures, although the mechanisms remain elusive. Quantifying the misperception phenotype involves two operational challenges: defining objective sleep latency and treating sleep latency and total sleep time as independent factors. We evaluated a novel approach to address these challenges and test the hypothesis that sleep fragmentation underlies misperception. We performed a retrospective analysis on patients with or without obstructive sleep apnea during overnight diagnostic polysomnography in our laboratory (n = 391; n = 252). We compared subjective and objective sleep-wake durations to characterize misperception. We introduce a new metric, sleep during subjective latency (SDSL), which captures latency misperception without defining objective sleep latency and allows correction for latency misperception when assessing total sleep time (TST) misperception. The stage content of SDSL is related to latency misperception, but in the opposite manner as our hypothesis: those with > 20 minutes of SDSL had less N1%, more N3%, and lower transition frequency. After adjusting for misperceived sleep during subjective sleep latency, TST misperception was greater in those with longer bouts of REM and N2 stages (OSA patients) as well as N3 (non-OSA patients), which also did not support our hypothesis. Despite the advantages of SDSL as a phenotyping tool to overcome operational issues with quantifying misperception, our results argue against the hypothesis that light or fragmented sleep underlies misperception. Further investigation of sleep physiology utilizing alternative methods than that captured by conventional stages may yield additional mechanistic insights into misperception. A commentary on this article appears in this issue on page 1211.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call