Abstract
To determine if sleep deprivation induces dry eye through altering peroxisome proliferator-activated receptor alpha (PPARα) expression in mice. The "stick over water" sleep deprivation-induced dry eye (SDE) model evaluated PPARα involvement in inducing this condition. Scanning electron microscopy (SEM) examined microvilli morphology in superficial corneal epithelial cells (SCECs) in SDE and PPARα-/- mice. Quantitative RT-PCR (qRT-PCR) and Western blot (WB) or immunostaining evaluated PPARα, carnitine palmitoyl transferase 1α (CPT1α), and transient receptor potential vanilloid 6 (TRPV6) expression levels and Ezrin phosphorylation status. Hematoxylin-eosin and Oil Red O staining characterized meibomian gland morphology and corneal lipid accumulation, respectively. Phenol red cotton threads measured tear production. In cultured corneal epithelial sheets, qRT-PCR, WB, and SEM determined the individual effects of fenofibrate and MK886 (PPARα agonist and antagonist, respectively) on PPARα, TRPV6 expression, and SCEC microvilli morphology. Corneal epithelial lipid accumulation, microvilli morphologic changes, and decreased tear production were associated with marked declines in PPARα, CPT1α, and TRPV6 expression levels as well as Ezrin phosphorylation status, whereas meibomian glands were unaltered in SDE mice. These effects of SDE mice mimicked those in their nonstressed PPARα-/-counterpart. Topical application of fenofibrate reversed these effects in SDE corneas. In cultured corneal epithelial sheets, fenofibrate increased PPARα and TRPV6 gene and protein expression levels and restored microvilli morphology, whereas MK886 attenuated these changes. Sleep deprivation induces dry eye through abnormal SCEC microvilli morphology, which is caused by sequential downregulation of PPARα, TRPV6 expression, and Ezrin phosphorylation status in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Investigative Opthalmology & Visual Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.