Abstract

Sleep disruption is highly associated with the pathogenesis and progression of a wild range of psychiatric disorders. Furthermore, appreciable evidence shows that experimental sleep deprivation (SD) on humans and rodents evokes anomalies in the dopaminergic (DA) signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Since adolescence is a vital period for the maturation of the DA system as well as the occurrence of mental disorders, the present studies aimed to investigate the impacts of SD on the DA system of adolescent mice. We found that 72h SD elicited a hyperdopaminergic status, with increased sensitivity to the novel environment and amphetamine (Amph) challenge. Also, altered neuronal activity and expression of striatal DA receptors were noticed in the SD mice. Moreover, 72h SD influenced the immune status in the striatum, with reduced microglial phagocytic capacity, primed microglial activation, and neuroinflammation. The abnormal neuronal and microglial activity were putatively provoked by the enhanced corticotrophin-releasing factor (CRF) signaling and sensitivity during the SD period. Together, our findings demonstrated the consequences of SD in adolescents including aberrant neuroendocrine, DA system, and inflammatory status. Sleep insufficiency is a risk factor for the aberration and neuropathology of psychiatric disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call