Abstract

Sleep deficiency is a rampant issue in modern society, serving as a pathogenic element contributing to learning and memory impairment, with heightened sensitivity observed in children. Clinical observations suggest that learning disabilities associated with insufficient sleep during adolescence can persist through adulthood, but experimental evidence for this is lacking. In this study, we examined the impact of early-life sleep deprivation (SD) on both short-term and long-term memory, tracking the effects sequentially into adulthood. We employed a modified multiple-platform method mouse model to investigate these outcomes. SD induced over a 14-day period, beginning on postnatal day 28 (PND28) in mice, led to significant impairment in long-term memory (while short-term memory remained unaffected) at PND42. Notably, this dysfunction persisted into adulthood at PND85. The specific impairment observed in long-term memory was elucidated through histopathological alterations in hippocampal neurogenesis, as evidenced by bromodeoxyuridine (BrdU) signals, observed both at PND42 and PND85. Furthermore, the hippocampal region exhibited significantly diminished protein expressions of astrocytes, characterized by lowered levels of aquaporin 4 (AQP4), a representative molecule involved in brain clearance processes, and reduced protein expressions of brain-derived neurotrophic factors. In conclusion, we have presented experimental evidence indicating that sleep deficiency-related impairment of long-term memory in adolescence can endure into adulthood. The corresponding mechanisms may indicate that the modification of astrocyte-related molecules has led to changes in hippocampal neurogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.