Abstract

BackgroundSerotonin plays a critical role in the regulation of food intake. The solute carrier family 6 member 14 (SLC6A14) and serotonin receptor 2C (5-HTR2C) genes are involved in the bioavailability and action of this neurotransmitter. ObjectiveEvaluation of the association of six polymorphisms in these genes with food intake and nutritional status in children followed to 7–8years of age. DesignBlood samples and the biodemographic data of 344 children were collected at three development stages, in a cross-sectional study undertaken with the cohort from a randomized trial. Polymorphisms were analyzed using polymerase chain reaction-based techniques. ResultsAt 7 to 8years of age, carriers of the A alleles for both the SLC6A14 rs2312054 and SLC6A14 rs12391221 polymorphisms showed higher food intake, except for the sugar-dense food (SDF) intake parameter, than T/T and C/C homozygotes, respectively. Boy carriers of the C allele of rs2071877 had a higher sum of triceps and subscapular folds than T allele carriers at 7 to 8years old. For 5-HTR2C gene variants, A allele carriers (rs3813928) and T allele carriers (rs3813929) had higher food intake at 3 to 4years old than G/G and C/C homozygotes, respectively, except for SDF. At this age, the intake of energy-dense foods was higher in carriers of the T allele (rs3813929) than in C/C homozygotes. ConclusionThis study provides evidence that genetic variants of these proteins might be involved in the determination of food intake and nutritional status in children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call