Abstract

AimsApoptosis and oxidant stress are known to be involved in the pathogenesis of diabetic kidney disease (DKD). We have previously reported that zinc transporter 7 in SLC30 family (SLC30A7) inhibits apoptosis in rat peritoneal mesothelial cells under high glucose (HG) conditions. In the current study, we aimed to investigate whether SLC30A7 had effect for anti-oxidant stress in renal tubular epithelial cells under HG. MethodsSLC30A7 in HG-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells)/kidneys of STZ-induced diabetic mice was examined and the activity of nuclear factor erythroid 2-related factor 2 (NFE2L2) was further analyzed by using real time RT-PCR, siRNA and Western blot protocols. ResultsSLC30A7 was found to be up-regulated, while NFE2L2 was activated in kidneys of STZ-induced diabetic mice and HG-induced apoptosis of NRK-52E cells. Knock-down of SLC30A7 with siRNA protocol resulted in lower intracellular free zinc levels in the cells and decreased zinc distribution in the Golgi apparatus. Furthermore, knock-down of NFE2L2 down-regulated its target HMOX1 gene expression, decreased SLC30A7 activity but increased HG-induced apoptosis. ConclusionThe current study provides new evidence that SLC30A7 has anti-oxidant stress effects in HG-induced apoptosis via the NFE2L2/HMOX1 signal transduction pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.