Abstract

BackgroundMany patients with enlarged vestibular aqueduct (EVA) have either only one allelic mutant of the SLC26A4 gene or lack any detectable mutation. In this study, multiplex ligation-dependent probe amplification (MLPA) was used to screen for copy number variations (CNVs) of SLC26A4 and to reveal the pathogenic mechanisms of non-syndromic EVA (NSEVA).MethodsBetween January 2003 and March 2010, 923 Chinese patients (481 males, 442 females) with NSEVA were recruited. Among these, 68 patients (7.4%) were found to carry only one mutant allele of SLC26A4 and 39 patients (4.2%) lacked any detectable mutation in SLC26A4; these 107 patients without double mutant alleles were assigned to the patient group. Possible copy number variations in SLC26A4 were detected by SALSA MLPA.ResultsUsing GeneMapper, no significant difference was observed between the groups, as compared with the standard probe provided in the assay. The results of the capillary electrophoresis showed no significant difference between the patients and controls.ConclusionOur results suggest that CNVs and the exon deletion in SLC26A4 are not important factors in NSEVA. However, it would be premature to conclude that CNVs have no role in EVA. Genome-wide studies to explore CNVs within non-coding regions of the SLC26A4 gene and neighboring regions are warranted, to elucidate their roles in NSEVA etiology.

Highlights

  • Copy number variations (CNVs) or copy number polymorphisms are complex gains or losses of several to hundreds of kilobases of DNA as a result of deletions, insertions, duplications, and complex multi-site variants

  • Our results suggest that CNVs and the exon deletion in SLC26A4 are not important factors in non-syndromic EVA (NSEVA)

  • It would be premature to conclude that CNVs have no role in enlarged vestibular aqueduct (EVA)

Read more

Summary

Introduction

Copy number variations (CNVs) or copy number polymorphisms are complex gains or losses of several to hundreds of kilobases of DNA as a result of deletions, insertions, duplications, and complex multi-site variants. CNVs are much more frequent than chromosomal aberrations They encompass more nucleotide content per genome than single-nucleotide polymorphisms (SNPs) [2,3]. Multiplex ligation-dependent probe amplification (MLPA) was used to screen for CNVs of the SLC26A4 gene in the present study. MLPA is a novel semi-quantitative method that was first developed by Schouten and colleagues in 2002 [5]. It allows the simultaneous processing of multiple sequences (up to 45) with various copy numbers. Multiplex ligation-dependent probe amplification (MLPA) was used to screen for copy number variations (CNVs) of SLC26A4 and to reveal the pathogenic mechanisms of non-syndromic EVA (NSEVA)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.