Abstract

The transport of transepithelial Cl- and HCO3- is crucial for the function of the intestinal epithelium and maintains the acid-based homeostasis. Slc26a3 (DRA), as a key chloride-bicarbonate exchanger protein in the intestinal epithelial luminal membrane, participates in the electroneutral NaCl absorption of intestine, together with Na+/H+ exchangers. Increasing recent evidence supports the essential role of decreased DRA function or expression in infectious diarrhea and inflammatory bowel disease (IBD). In this review, we give an overview of the current knowledge of Slc26a3, including its cloning and expression, function, roles in infectious diarrhea and IBD, and mechanisms of actions. A better understanding of the physiological and pathophysiological relevance of Slc26a3 in infectious diarrhea and IBD may reveal novel targets for future therapy. Understanding the physiological function, regulatory interactions, and the potential mechanisms of Slc26a3 in the pathophysiology of infectious diarrhea and IBD will define novel therapeutic approaches in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.