Abstract

Low-temperature storage can facilitate to the preservation of postharvest fruits. However, tomato fruit are vulnerable to chilling injury (CI) throughout refrigerated storage, resulting in economic losses. Abscisic acid (ABA) treatment weakened the CI progression in tomato fruit. Protein phosphatase 2C 29 (SlPP2C29) acted as the negative regulator in the ABA-enhanced chilling tolerance. The gene expression of SlPP2C29 and activity of PP2C were down regulated by ABA treatment. Furthermore, SlPP2C29 was shown to be the negative downstream messenger in the ABA-alleviated oxidative damage. Moreover, basic helix-loop-helix 1 (SlbHLH1) bound to the E-box element within SlPP2C29 promoter, and negatively modulated its expression. SlbHLH1 mediated the ABA-boosted chilling tolerance. It turned out that SlbHLH1 was the positive modulator involved in the ABA-inhibited SlPP2C29 expression and PP2C activity. SlbHLH1 was furtherly found to work as the positive regulator in the ABA-lowered oxidative damage. Thus, SlbHLH1 alleviated the CI severity by repressing SlPP2C29 under ABA treatment in tomato fruit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call