Abstract

With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and hardware development life-cycle duration and high costs. Therefore, simulator-based virtual testing has gained traction over the years as the preferred testing method due to its low cost, efficiency, and effectiveness in executing a wide range of testing scenarios. Companies like ANSYS and NVIDIA have come up with robust simulators, and open-source simulators such as CARLA have also populated the market. However, there is a lack of lightweight and simple simulators catering to specific test cases. In this paper, we introduce the SLAV-Sim, a lightweight simulator that specifically trains the behaviour of a self-learning autonomous vehicle. This simulator has been created using the Unity engine and provides an end-to-end virtual testing framework for different reinforcement learning (RL) algorithms in a variety of scenarios using camera sensors and raycasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.