Abstract
An immersion of a differentiable manifold into an almost Hermitian manifold is called a \textit{general slant immersion} if it has constant Wirtinger angle ([3, 6]). A general slant immersion which is neither holomorphic nor totally real is called a proper slant immersion. In the first part of this article, we prove that every general slant immersion of a compact manifold into the complex Euclidean $m$-space $\mathbf{C}^m$ is totally real. This result generalizes the well-known fact that there exist no compact holomorphic submanifolds in any complex Euclidean space. In the second part, we classify proper slant surfaces in $\mathbf{C}^2$ when they are contained in a hypersphere $S^3$, or contained in a hyperplane $E^3$, or when their Gauss maps have rank $<2$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.