Abstract
We introduce slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds as a generalization of slant immersions, invariant Riemannian maps and anti-invariant Riemannian maps. We give examples, obtain characterizations and investigate the harmonicity of such maps. We also obtain necessary and sufficient conditions for slant Riemannian maps to be totally geodesic. Moreover, we relate the notion of slant Riemannian maps to the notion of pseudo horizontally weakly conformal (PHWC) maps which are useful for proving various complex-analytic properties of stable harmonic maps from complex projective space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.