Abstract

Notable problems in Simultaneous Localization and Mapping (SLAM) are caused by biases and drifts in both exteroceptive and proprioceptive sensors. The impacts of sensor biases include inconsistent map estimates and inaccurate localization. Unlike Map Aided Localisation with Joint Sensor Bias Estimation (MAL-JSBE), SLAM with Joint Sensor Bias Estimation (SLAM-JSBE) is more complex as it encompasses a state space, which increases with the discovery of new landmarks and the inherent map to vehicle correlations. The properties such as observability, error bounds and convergence rates of SLAM-JSBE using an augmented estimation theoretic, state space approach, are investigated here. SLAM-JSBE experiments, which adhere to the derived constraints, are demonstrated using a low cost inertial navigation sensor suite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.