Abstract

In order to solve the problems of difficulty and high-risk factor in implementing rescue after disasters, this paper designs an intelligent rescue robot autonomous navigation system based on LIDAR synchronous positioning and map building, with a view to achieving autonomous navigation of robots in complex post-disaster scenarios to complete rescue tasks. Firstly, the autonomous navigation system senses the scene by LiDAR and uses gmapping algorithms to construct a map of the post-disaster environment. Secondly, adaptive Monte Carlo localization algorithm is used to achieve robot localization based on radar and odometer data. Then the robot rescue work path is planned to use the Dijkstra algorithm. And TEB local planning path algorithm is used to control the robot. Finally, to verify the reliability of the autonomous navigation system designed in this paper, the ROS system software framework is used as the basis. The SLAM map construction, global path planning, and local real-time obstacle avoidance are tested practically under the scenario to ensure that the autonomous navigation of the mobile robot meets the requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.