Abstract

The design and optimization of novel structures is an essential part of the next-generation solar cells development. Indeed, the technological steps involved in the development of high-performance solar cells involve a huge set of interdependent physical and geometrical parameters: layers thicknesses, dopings, compositions, and defect characteristics. In this work, we propose a new open-source and free solar cell optimizer: SLALOM − for SoLAr ceLl multivariate OptiMizer − that implements a rigorous multivariate approach, which improves from the one-parameter-at-a-time procedure that is traditionally used in the field to a state-of-the-art multivariate approach. Applied to indium gallium nitride (InGaN) solar cells, it shows its potential to become a useful tool for the development of novel solar cells. SLALOM is implemented to be extended to any semiconductor simulation engine. Several models for solar cells have been implemented in SLALOM, including, for instance, InGaN. One can adapt these models to any solar cell technology by changing the parameter set, the here proposed generic code structure remaining unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.