Abstract

In both the United States and the United Kingdom, slurry walls are used as vertical barriers to control groundwater flow and to contain contaminants as part of waste containment systems. In the United States, slurry walls are commonly constructed using soil-bentonite ~SB! and the barrier typically consists of a mixture of select soil, bentonite, and bentonite-water slurry. Alternatively, in the United Kingdom, the barrier wall comprises a mixture of cement, blast furnace slag, and bentonite-water slurry. After a comparison of the two techniques, this paper presents the results of permeability and unconfined compressive strength tests on twenty-one different mixtures of slag-cement-bentonite ~slag-CB!. The slurry wall materials tested in this study were prepared using sample formulations originating in the United Kingdom and materials originating in the United States. Unconfined compression tests were performed on samples after one month of curing, while permeability tests were performed after one, two, three, six, and twelve months of curing. For the mixtures tested and cured twelve months, two mixtures ~one having 20% cementitious material with 70% slag replacement and another having 15% cementitious material with 80% slag replacement! were found to have the lowest hydraulic conductivity s2 3 10 ˛8 cm/ sd. The data show that 0 to 60% slag replacement had little effect on hydraulic conductivity of the resulting slag-CB mixtures. However, the hydraulic conductivity drastically decreases as the slag replacement increases from 70 to 80%. As expected, the unconfined compressive strength increased as the cementitious material content increased from 10 to 15 to 20%. The slag-CB consolidates rapidly and has compression characteristics similar to other high moisture materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.