Abstract

This paper describes a statistical and mathematical approach to optimize the mechanical properties of a wood plastic composite with Polyethylene Terephthalate (PET) as polymeric matrix. Wood plastic composite are materials that consist of a primary continuous polymer phase, where a secondary filler dispersed phase is embedded, the filler generally is wood fibers or sawdust. The slack variable approach in mixture experiments, consist in selecting a component of the mixture as slack variable, to subsequently design and analyze the experiment in terms of the remaining components. With the experimental design information three slack variable model were fit. Using response surface graphs, we show how different compositions modify the mechanical properties of wood plastic composite. Besides, by the desirability function, the optimal formulation of the compound that simultaneously maximizing the mechanical properties of wood plastic composite, was obtained. Finally, the components proportions that provides the best tensile, flexural and compression strength are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.