Abstract

Recently Gouveia, Thomas and the authors introduced the slack realization space, a new model for the realization space of a polytope. It represents each polytope by its slack matrix, the matrix obtained by evaluating each facet inequality at each vertex. Unlike the classical model, the slack model naturally mods out projective transformations. It is inherently algebraic, arising as the positive part of a variety of a saturated determinantal ideal, and provides a new computational tool to study classical realizability problems for polytopes. We introduce the package SlackIdeals for Macaulay2, that provides methods for creating and manipulating slack matrices and slack ideals of convex polytopes and matroids. Slack ideals are often difficult to compute. To improve the power of the slack model, we develop two strategies to simplify computations: we scale as many entries of the slack matrix as possible to one; we then obtain a reduced slack model combining the slack variety with the more compact Grassmannian realization space model. This allows us to study slack ideals that were previously out of computational reach. As applications, we show that the well-known Perles polytope does not admit rational realizations and prove the non-realizability of a large simplicial sphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.