Abstract
Optical imaging based on intrinsic signals is a powerful tool for in vivo studying functional organization of various cortices. Here, the functional architecture of orientation-sensitive neurons in higher order extrastriate cortical area 21a was investigated in cats using optical imaging combined with electrophysiological methods. It is found that neurons in area 21 with similar preferred orientations were functionally organized into a slab-like columnar structure orthogonal to the cortical surface, and the orientation columns were distributed more densely than those in area 17. The responsiveness and activated areas of optical maps visually elicited by the horizontal and vertical gratings were always larger than those by oblique gratings in areas 21a and 17. This neural oblique effect shown in orientation maps was more significant in area 21a than that in area 17. The findings suggest a neuronal mechanism in the higher order extrastriate cortex involving the visual perceptive process of the superiority of cardinal contours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.