Abstract

We analyze static configurations for chiral liquid crystals in the framework of the Oseen–Frank theory. In particular, we find numerical solutions for localized axisymmetric states in confined chiral liquid crystals with weak homeotropic anchoring at the boundaries. These solutions describe the distortions of twodimensional skyrmions, known as either spherulites or cholesteric bubbles, which have been observed experimentally in these systems. We outline relations to nonlinear integrable equations and use the relations to study the asymptotic behavior of the solutions. Using analytic methods, we build approximate solutions of the equilibrium equations and analyze the generation and stabilization of these states in relation to the material parameters, external fields, and anchoring boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.