Abstract

We show that thermal stability of magnetic skyrmions can be strongly affected by entropic effects. The lifetimes of isolated skyrmions in atomic Pd/Fe bilayers on Ir(111) and on Rh(111) are calculated in the framework of harmonic transition state theory based on an atomistic spin model parametrized from density functional theory. Depending on the system the attempt frequency for skyrmion collapse can change by up to nine orders of magnitude with the strength of the applied magnetic field. We demonstrate that this effect is due to a drastic change of entropy with skyrmion radius which opens a novel route towards stabilizing sub-10 nm skyrmions at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.