Abstract
Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature—magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior.
Highlights
Scitation.org/journal/apl by the formation of stable nuclei
We use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role
While the inherent features of the fluctuation-induced discontinuities are important, their investigation remains scarce, especially experimentally. We address this by reporting a study in the coexistence region at the phase boundary between the skyrmion lattice and ferromagnetic stripe phases in amorphous Fe–Gd alloy thin films
Summary
Scitation.org/journal/apl by the formation of stable nuclei. Interestingly, fluctuationinduced first-order phase transitions have been theoretically predicted .[3,4] It was proposed that excessive critical fluctuations may lead to a first-order transition before reaching the critical point, thereby modifying an expected continuous transition to become first-order. We use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.