Abstract

A fundamental property of particles and antiparticles (such as electrons and positrons, respectively) is their ability to annihilate one another. A similar behaviour is predicted for magnetic solitons1—localized spin textures that can be distinguished by their topological index Q. Theoretically, magnetic topological solitons with opposite values of Q, such as skyrmions2 and their antiparticles (namely, antiskyrmions), are expected to be able to continuously merge and annihilate3. However, experimental verification of such particle–antiparticle pair production and annihilation processes has been lacking. Here we report the creation and annihilation of skyrmion–antiskyrmion pairs in an exceptionally thin film of the cubic chiral magnet of B20-type FeGe observed using transmission electron microscopy. Our observations are highly reproducible and are fully consistent with micromagnetic simulations. Our findings provide a new platform for the fundamental studies of particles and antiparticles based on magnetic solids and open new perspectives for practical applications of thin films of isotropic chiral magnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call