Abstract

Magnetic Skyrmions can be considered as localized vortexlike spin textures which are topologically protected in continuous systems. Because of their stability, their small size, and the possibility to move them by low electric currents, they are promising candidates for spintronic devices. Without changing the topological charge, it is possible to create Skyrmion-anti-Skyrmion pairs. We derive a Skyrmion equation of motion which reveals how spin-polarized charge currents create Skyrmion-anti-Skyrmion pairs. It allows us to identify general prerequisites for the pair creation process. We corroborate these general principles by numerical simulations. On a lattice, where the concept of topological protection has to be replaced by that of a finite energy barrier, the anti-Skyrmion partner of the pairs is annihilated and only the Skyrmion survives. This eventually changes the total Skyrmion number and yields a new way of creating and controlling Skyrmions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call