Abstract

A new Skyrme functional devised to account well for standard nuclear properties as well as for spin and spin-isospin properties is presented. The main novelty of this work relies on the introduction of tensor terms guided by \textit{ab initio} relativistic Brueckner-Hartree-Fock calculations of neutron-proton drops. The inclusion of tensor term does not decrease the accuracy in describing bulk properties of nuclei, experimental data of some selected spherical nuclei such as binding energies, charge radii, and spin-orbit splittings can be well fitted. The new functional is applied to the investigation of various collective excitations such as the Giant Monopole Resonance (GMR), the Isovector Giant Dipole Resonance (IVGDR), the Gamow-Teller Resonance (GTR), and the Spin-Dipole Resonance (SDR). The overall description with the new functional is satisfactory and the tensor terms are shown to be important particularly for the improvement of the Spin-Dipole Resonance results. Predictions for the neutron skin thickness based on the non-energy weighted sum rule of the Spin-Dipole Resonance are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.