Abstract
The advances in unmanned aerial vehicle (UAV) technology have empowered mobile operators to deploy LTE (long-term evolution) base stations (BSs) on UAVs and provide on-demand, adaptive connectivity to hotspot venues as well as emergency scenarios. However, today's evolved packet core (EPC) that orchestrates LTE's radio access network (RAN) faces fundamental limitations in catering to such a challenging, wireless, and mobile UAV environment, particularly in the presence of multiple BSs (UAVs). In this work, we argue for and propose an alternate, radical edge EPC design, called SkyCore that pushes the EPC functionality to the extreme edge of the core network---collapses the EPC into a single, lightweight, self-contained entity that is colocated with each of the UAV BS. SkyCore incorporates elements that are designed to address the unique challenges facing such a distributed design in the UAV environment, namely the resource constraints of UAV platforms, and the distributed management of pronounced UAV and UE mobility. We build and deploy a fully functional version of SkyCore on a two-UAV LTE network and showcase its (i) ability to interoperate with commercial LTE BSs as well as smartphones, (ii) support for both hotspot and stand-alone multi-UAV deployments, and (iii) superior control and data plane performance compared to other EPC variants in this environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications of the ACM
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.