Abstract

Purpose The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high load-carrying capacity and dexterity of the robot; on the other hand, the fully autonomous mode is uncontrollable and the teleoperation mode has a high failure rate. Therefore, this study aims to design a distribution network operation robot named Sky-Worker to solve the above two problems. Design/methodology/approach The heterogeneous arms of Sky-Worker are driven by hydraulics and electric motors to solve the contradiction between high load-carrying capacity and high flexibility. A human–robot collaborative shared control architecture is built to realize real-time human intervention during autonomous operation, and control weights are dynamically assigned based on energy optimization. Findings Simulations and tests show that Sky-Worker has good dexterity while having a high load capacity. Based on Sky-Worker, multiuser tests and practical application experiments show that the designed shared-control mode effectively improves the success rate and efficiency of operations compared with other current operation modes. Practical implications The designed heterogeneous dual-arm distribution robot aims to better serve distribution line operation tasks. Originality/value For the first time, the integration of hydraulic and motor drives into a distribution network operation robot has achieved better overall performance. A human–robot cooperative shared control framework is proposed for remote live-line working robots, which provides better operation results than other current operation modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call