Abstract

Nous proposons une nouvelle construction d’un plongement de Skorokhod: étant donnée une mesure de probabilité $\mu$ avec espérance nulle et variance finie, nous construisons un temps d’arrêt intégrable $T$ adapté à la filtration $\mathcal{F}_{t}$, tel que $W_{T}$ possède la loi $\mu$ et $W$ est un processus de Wiener standard adapté à la même filtration. Nous trouvons plusieurs conditions suffisantes pour que le temps d’arrêt $T$ soit borné ou ait des queues sous-exponentielles. En particulier, notre plongement semble assez naturel dans le cas où $\mu$ est log-concave et $T$ satisfait plusieurs estimations fortes. Notre plongement a la propriété suivante : le processus stochastique à valeur dans les mesures $\{\mu_{t}\}_{t\geq0}$, où $\mu_{t}$ est la loi de $W_{T}$ conditionnée par $\mathcal{F}_{t}$, est un processus de Markov. Compte tenu de cette propriété, nous allons considérer une famille plus générale de plongements de Skorokhod qui peuvent être construits à l’aide d’un noyau générant un flot stochastique sur l’espace des mesures. Cette famille inclut des constructions déjà existantes comme celle d’Azéma–Yor (In Séminaire de Probabilités XIII (1979) 90–115 Springer) et celle de Bass (In Séminaire de Probabilités XVII (1983) 221–224 Springer), suggérant ainsi un point de vue nouveau sur ces constructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.