Abstract

We consider the following Markov Reachability decision problems that view Markov Chains as Linear Dynamical Systems: given a finite, rational Markov Chain, source and target states, and a rational threshold, does the probability of reaching the target from the source at the nth step: (i) equal the threshold for some n? (ii) cross the threshold for some n? (iii) cross the threshold for infinitely many n? These problems are respectively known to be equivalent to the Skolem, Positivity, and Ultimate Positivity problems for Linear Recurrence Sequences (LRS), number-theoretic problems whose decidability has been open for decades. We present an elementary reduction from LRS Problems to Markov Reachability Problems that improves the state of the art as follows. (a) We map LRS to ergodic (irreducible and aperiodic) Markov Chains that are ubiquitous, not least by virtue of their spectral structure, and (b) our reduction maps LRS of order k to Markov Chains of order k+1: a substantial improvement over the previous reduction that mapped LRS of order k to reducible and periodic Markov chains of order 4k+5. This contribution is significant in view of the fact that the number-theoretic hardness of verifying Linear Dynamical Systems can often be mitigated by spectral assumptions and restrictions on order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.